Thermal error compensation for a fluid-cooling ball-screw feed system

Author:

Li Yan12ORCID,Fan Jiabo12,Zheng Yuan12,Gao Feng12,Li Wenqiang12,Hei Chenfei3

Affiliation:

1. Key Lab of Mechanical Manufacturing Equipment of Shaanxi Province, Xi’an, China

2. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China

3. Xi’an Jiaotong University City College, Xi’an, China

Abstract

Thermal deformation resulted from the heat generated by the motor and the frictional behavior between the moving pairs significantly reduces the positioning accuracy of feed systems and thus influences the machining quality of parts. The internal cooling ball screw takes advantage of the cooling liquid to strengthen the convection heat transfer actively and suppress the temperature rise. Owing to the intermittent starting and stopping operation modes of the cooling machine, the heat flux arising from various heat sources cannot be completely removed by the coolant; consequently, thermal errors still exist. In this study, K-means++ clustering and correlation analyses were used to select thermal key points. A difference equation model of the thermal error was established to describe the transient change relationship between the temperatures of the thermal key points and the ball-screw shaft elongation, which was separated from the thermal characteristic experimental data according to the linear superposition principle of geometric and thermal errors to constitute the positioning error. The model parameters were identified using the least-squares method, and a thermal error compensation strategy based on the origin offset method was implemented. Experiments comparing the thermal error compensation of the three models under different working conditions were conducted to confirm that the thermal error difference equation model can be applied to reduce the thermal error of the feed system effectively and maintain excellent robustness.

Funder

Key Industrial Chain Project of Shaanxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3