Micro-stereolithography tools for small-batch manufacture of polymer micro-parts

Author:

Griffiths C A1,Dimov S S1,Fischer S2,Spitzbart M2,Lacan F1

Affiliation:

1. School of Engineering, Cardiff University, Cardiff, UK

2. University of Applied Sciences, Weiner Neustadt, Austria

Abstract

Rapid tooling solutions can be used to manufacture prototypes and small batches of parts that are critical to part and tool design verification and thus to minimize the production cost and lead time in developing new products. Layer-based manufacture of prototypes is a proven technology for an early assessment of the designs of products and, with the introduction to the market of new micro-stereography technologies, rapid tooling becomes an important option for low-volume production of polymer micro-components. Thus, to broaden the use of these technologies, it is necessary to understand the behaviour of rapid tooling inserts under cyclic thermodynamic loads. The paper investigates a rapid tooling solution for fabricating ‘soft’ inserts that are validated by injection moulding small batches of polymer parts. The mouldings produced using such soft tools are analysed and conclusions are made about the tool-making capability of the micro-stereography process. In particular, it was found that the soft inserts were fabricated with sufficient accuracy by employing this rapid tooling process. Also, it was experimentally validated that they could be applied successfully to produce small batches of functional parts, and in particular to a lens micro-device. The most important factors affecting their injection-moulding capabilities were the build orientation of the inserts and the process settings to account for the build-up of thermal energy during the replication cycles.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3