Influence of AA7075 crystallographic orientation on micro-grinding force

Author:

Zhao Man12,Ji Xia1ORCID,Liang Steven Y12

Affiliation:

1. School of Mechanical Engineering, Donghua University, Shanghai, China

2. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

In micro-grinding, the depth of cut is smaller than the grain size of workpiece material. Since the micro-grinding wheel cuts through the grain boundaries, the crystallographic effects become more significant in the micro-grinding than that in macro-machining. To quantify the effect of crystallographic orientation on the flow stress of polycrystalline material, the Taylor factor model is developed by examining the number and type of the activated slip systems. Then, the shear force model is developed based on the flow stress model considering the effect of crystallographic orientation. Moreover, the plowing force is predicted based on the Vickers hardness of workpiece material and the plowing friction coefficient. A comprehensive model is then proposed to predict micro-grinding force by consolidating the mechanical, thermal, crystallographic, and size effect. Micro-grinding experiments adopting Taguchi’s method were conducted to verify the model, and the results indicated that the predictions agree well with the experimental data. Besides, single-factorial experiments were conducted with the only variable being Taylor factor and the results suggest that the Taylor factor model is capable of capturing the effect of crystallographic orientation on grinding force.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3