Multi-objective parametric optimization for high surface quality and process efficiency in micro-grinding

Author:

Wang Jun12,Ye Qiang1,Zhao Man3,Shi Xusheng2,Fei Tingwei2

Affiliation:

1. School of Management, Harbin Institute of Technology, Harbin, China

2. Beijing Jinghang Computation and Communication Institute, Beijing, China

3. School of Mechanical and Automotive engineering, Shanghai University of Engineering Science, Shanghai, China

Abstract

In this study, for the selection of maximum material removal rate and minimum surface roughness [Formula: see text] in micro-grinding of aluminum alloy through multi-response optimization, two optimization approaches are proposed based on statistical analysis and genetic algorithm. The statistical analysis–based approach applies response surface methodology according to the analysis of variance to propose a mathematical model for [Formula: see text]. In addition, the individual desirability of material removal rate, [Formula: see text], and the global desirability function are calculated, and the inverse analysis is conducted to locate input setting giving maximum desirability function. The genetic algorithm–based approach uses the improved multi-objective particle swarm optimization with the experimental data trained by support vector machine. To demonstrate that the material microstructure is a significant parameter for material removal rate and [Formula: see text], the models with and without Taylor factor consideration are developed and compared. The optimized results achieved from both response surface methodology and improved multi-objective particle swarm optimization demonstrate that the consideration of Taylor factor can significantly improve the optimization process to achieve the maximum material removal rate and minimum [Formula: see text].

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the performance characteristics of grinding wheel using low melting vitrified bonds;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-10-17

2. Experimental Research on Preparation and Grinding Surface Quality of Coated Micro-Grinding Tools;Journal of Materials Engineering and Performance;2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3