Evaluating the sensitivity of acoustic emission signal features to the variation of cutting parameters in milling aluminum alloys: Part A: frequency domain analysis

Author:

Anahid Mohamad Javad1,Heydarnia Hoda2,Niknam Seyed Ali13ORCID,Mehmanparast Hedayeh4

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Department of Mechanical Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC, Canada

3. Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, Canada

4. Department of Mechanical, Industrial and Aerospace Engineering (MIAE), Gina Cody School of Engineering and Computer Science, University of Concordia, Montreal, QC, Canada

Abstract

It is known that adequate knowledge of the sensitivity of acoustic emission signal parameters to various experimental parameters is indispensable. According to the review of the literature, a lack of knowledge was noticeable concerning the behavior of acoustic emission parameters under a broad range of machining parameters. This becomes more visible in milling operations that include sophisticated chip formation morphology and significant interaction effects and directional pressures and forces. To remedy the aforementioned lack of knowledge, the effect of the variation of cutting parameters on the time and frequency features of acoustic emission signals, extracted and computed from the milling operation, needs to be investigated in a wide aspect. The objective of this study is to investigate the effects of cutting parameters including the feed rate, cutting speed, depth of cut, material properties, as well as cutting tool coating/insert nose radius on computed acoustic emission signals featured in the frequency domain. Similar studies on time-domain signal features were already conducted. To conduct appropriate signal processing and feature extraction, a signal segmentation and processing approach is proposed based on dividing the recorded acoustic emission signals into three sections with specific signal durations associated with cutting tool movement within the work part. To define the sensitive acoustic emission parameters to the variation of cutting parameters, advanced signal processing and statistical approaches were used. Despite the time features of acoustic emission signals, frequency domain acoustic emission parameters seem to be insensitive to the variation of cutting parameters. Moreover, cutting factors governing the effectiveness of acoustic emission signal parameters are hinted. Among these, the cutting speed and feed rate seem to have the most noticeable effects on the variation of time–frequency domain acoustic emission signal information, respectively. The outcomes of this work, along with recently completed works in the time domain, can be integrated into advanced classification and artificial intelligence approaches for numerous applications, including real-time machining process monitoring.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3