Research on the coupling characteristics of energy power density of cutting vibration and cutting heat based on the particle swarm optimization algorithm

Author:

Li Songyuan1,Li Shuncai12ORCID,Li Yuqing2,Vladimirovich Petrov Anton3

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

2. JSNU-SPBPU Institute of Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

3. Institute of Advanced Manufacturing Technologies, Petersburg Polytechnic University, 1952151 Saint Petersburg, Russia

Abstract

Cutting heat and cutting vibration are important basic research topics in the field of machining. Many factors affect cutting heat and cutting vibration, and cutting heat and cutting vibration also affect each other. This paper mainly studied the coupling characteristics between cutting vibration and cutting heat from the perspective of energy power density. A measurement system was built to collect the time-domain signals of cutting temperature and three-dimensional cutting vibration. Through Stefan–Boltzmann's law, the cutting thermal power density represented by the cutting temperature was obtained. Frequency domain analysis dealing with the self-power spectrum density was carried out on the three-dimensional vibration acceleration, and the operation of reducing the vibration dimension was carried out by principal component analysis. Based on the particle swarm optimization algorithm, two coupling models between cutting heat and cutting vibration were established. The research showed that the coupling correlation coefficient between cutting heat and cutting vibration was above 0.6. The coupling characteristics of cutting heat and cutting vibration were strong, and the impact of cutting vibration on cutting heat was more significant. The conclusions provide theoretical guidance for studying the coupling characteristics of cutting heat and cutting vibration from the energy perspective.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3