Enhanced tool condition monitoring using wavelet transform-based hybrid deep learning based on sensor signal and vision system
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s00170-024-13680-y.pdf
Reference40 articles.
1. Wang M, Zhou J, Gao J, Ziqiu Li Z, Li E (2020) Milling tool wear prediction method based on deep learning under variable working conditions. IEEE Access XX:1–9. https://doi.org/10.1109/ACCESS.2020.3010378
2. Zheng H, Lin J (2019) A deep learning approach for high speed machining tool wear monitoring. Proc 2019 3rd IEEE Int Conf Robot Autom Sci ICRAS 2019. https://doi.org/10.1109/ICRAS.2019.8809070
3. Mohanraj T, Yerchuru J, Krishnan H, NithinAravind RS, Yameni R (2021) Development of tool condition monitoring system in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms. Meas J Int Meas Confed 173:108671. https://doi.org/10.1016/j.measurement.2020.108671
4. Bai L, Liu H, Zhang J, Zhao W (2023) Real-time tool breakage monitoring based on dimensionless indicators under time-varying cutting conditions. Robot Comput Integr Manuf 81:102502. https://doi.org/10.1016/j.rcim.2022.102502
5. Wang G, Guo Z, Yang Y (2013) Force sensor based online tool wear monitoring using distributed Gaussian ARTMAP network. Sensors Actuators, A Phys 192:111–118. https://doi.org/10.1016/j.sna.2012.12.029
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models;Electronics;2024-09-02
2. Tool Condition Monitoring in the Milling Process Using Deep Learning and Reinforcement Learning;Journal of Sensor and Actuator Networks;2024-07-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3