Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models

Author:

Shah Milind12ORCID,Borade Himanshu3ORCID,Dave Vipul4ORCID,Agrawal Hitesh3,Nair Pranav5,Vakharia Vinay2ORCID

Affiliation:

1. Department of Product Development, Production and Design, School of Engineering, Jönköping University, 55318 Jönköping, Sweden

2. Department of Mechanical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382007, India

3. Mechanical Engineering Department, Medi-Caps University, Indore 453331, India

4. Department of Mechanical Engineering, Parul Institute of Engineering and Technology, Parul University, Vadodara 391760, India

5. Matter Motor Works, Ahmedabad 382475, India

Abstract

Developing precise deep learning (DL) models for predicting tool wear is challenging, particularly due to the scarcity of experimental data. To address this issue, this paper introduces an innovative approach that leverages the capabilities of tabular generative adversarial networks (TGAN) and conditional single image GAN (ConSinGAN). These models are employed to generate synthetic data, thereby enriching the dataset and enhancing the robustness of the predictive models. The efficacy of this methodology was rigorously evaluated using publicly available milling datasets. The pre-processing of acoustic emission data involved the application of the Walsh-Hadamard transform, followed by the generation of spectrograms. These spectrograms were then used to extract statistical attributes, forming a comprehensive feature vector for model input. Three DL models—encoder-decoder long short-term memory (ED-LSTM), gated recurrent unit (GRU), and convolutional neural network (CNN)—were applied to assess their tool wear prediction capabilities. The application of 10-fold cross-validation across these models yielded exceptionally low RMSE and MAE values of 0.02 and 0.16, respectively, underscoring the effectiveness of this approach. The results not only highlight the potential of TGAN and ConSinGAN in mitigating data scarcity but also demonstrate significant improvements in the accuracy of tool wear predictions, paving the way for more reliable and precise predictive maintenance in manufacturing processes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3