Affiliation:
1. Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
2. Department of Agricultural and Biological System Engineering, Florida A&M University, Tallahassee, FL, USA
Abstract
Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use.
Subject
General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献