Soybean response under climatic scenarios with changed mean and variability under rainfed and irrigated conditions in major soybean-growing states of the USA

Author:

Timilsina A. P.ORCID,Baigorria G. A.,Wilhite D.,Shulski M.,Heeren D.,Romero C.,Fensterseifer C. A.

Abstract

AbstractClimate change has an impact on soybean production in the USA, necessitating thorough impact studies across broad geographic areas and extended periods to develop appropriate coping strategies. This study investigates the simulated response of soybean in ten major soybean-growing states of the USA under Climate Model Intercomparison Project Phase 5 based on multiple global climate models, two representative concentration pathways [RCP8.5 and RCP4.5] under rainfed and irrigated conditions for 2013–2039, 2043–2069, 2063–2099. The future climate series was developed using Agricultural Model Intercomparison and Improvement Project protocol by applying mean and variability, and CROPGRO-soybean model was explored for soybean simulation under 400 ppm CO2 level and a set of management. Under future climate, intense changes in temperature, precipitation amount and variability are anticipated under RCP8.5 than RCP4.5. As a result, a shorter life cycle, more evapotranspiration, lower grain production, higher water consumption and water productivity were expected under RCP8.5 than RCP4.5 scenarios. A higher reduction in grain yield and water productivity is expected under rainfed than irrigated conditions and intensity increases with advancement towards end of the century. Irrigation tends to decrease adverse climate change effects; however, the marginal economy for irrigation water must be assessed. Since the northern states under study are likely to experience increased grain yields or lower negative impacts, these areas could be the major production zones for soybean production in the future if only climate change is taken into account. Before reaching a convincing conclusion, different adaptation strategies must be thoroughly investigated.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3