Combined dynamics and kinematics networked fuzzy task priority motion planning for underwater vehicle-manipulator systems

Author:

Wei Yanhui1,Hou Yongkang1ORCID,Luo Shanshan1,Li Qiangqiang1ORCID,Xie Jishun1

Affiliation:

1. Department of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Abstract

The underwater vehicle-manipulator systems (UVMS) face significant challenges in trajectory tracking and motion planning because of external disturbance (current and payload) and kinematic redundancy. Former algorithms can finish the tracking of end-effector (EE) and free of singularity redundancy solution alone. However, only a few analytical studies have been conducted on coordinated motion planning of UVMS considering the dynamics controller. This article introduces a combined dynamics and kinematics networked fuzzy task priority motion planning method to solve the above problems. It avoids the assumption of perfect dynamic control. Firstly, to eliminate the kinematics error, a dynamic transformation method from joint space to task space is proposed. Without chattering, an outer loop sliding mode controller is designed for tracking EE’s trajectory. Further, to ensure the underwater vehicle’ posture stability and joint constraint, a task priority frame with kinematics error is used to planning the coordinated motion of UVMS, in which the posture and joint limits map into the null space of prioritized tasks, and weight gains are adopted to guarantee orthogonality of secondary tasks. On top of that, the gain weighted are updated by the networked fuzzy logic. The proposed algorithm achieves better coordinated motion planning and tracking performance. Effectiveness is validated by numerical simulation.

Funder

Research and development of key technologies and equipment for underwater life detection?search and rescue

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference31 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3