A robust optimal control by grey wolf optimizer for underwater vehicle-manipulator system

Author:

Dai YongORCID,Wang Duo,Shen Fangyu

Abstract

Underwater vehicle-manipulator system (UVMS) is a commonly used underwater operating equipment. Its control scheme has been the focus of control researchers, as it operates in the presence of lumped disturbances, including modelling uncertainties and water disturbances. To address the nonlinear control problem of the UVMS, we propose a robust optimal control approach optimized using grey wolf optimizer (GWO). In this scheme, the nonlinear dynamic model of UVMS is deduced to a linear state-space model in the case of the lumped disturbances. Then, the GWO algorithm is used to optimize the Riccati equation parameters of the H∞ controller in order to achieve the H∞ performance criterion, such as stability and disturbance rejection. The optimization is performed by evaluating the performance of the closed-loop UVMS in real-time comparison with the popular artificial intelligent algorithms, such as as ant colony algorithm (ACO), genetic algorithm (GA), and particle swarm optimization (PSO), using feedback control from the physical hardware-in-the-loop UVMS platform. This scheme can result in improved H∞ control system performance, and it is able to ensure that UVMS has strong robustness to these lumped disturbances. Last, the validity of the proposed scheme can be established, and its performance in overcoming modeling uncertainties and external disturbances can be observed and analyzed by performing the hardware-in-the-loop experiments.

Funder

2021 High-Level Talents Research Support Program of Shenyang Ligong University

Scientific Research Fund of Liaoning Provincial Education Department

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Gianluca Antonelli. Underwater robots, volume 3. Springer, 2014.

2. Nonlinear control systems-a brief overview of historical and recent advances;Iqbal Jamshed;Nonlinear Engineering,2017

3. Underwater robotic vehicles: Latest development trends and potential challenges;Tahir Ahmad Mahmood;Science International,2014

4. Dynamics simulation of grasping process of underwater vehicle-manipulator system;Chang Zongyu;Journal of Marine Science and Engineering,2021

5. Real-time UVMS torque distribution algorithm based on weighting matrix;Moon Yecheol;Plos one,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3