Autonomous feature type selection based on environment using expectation maximization in self-localization

Author:

Özkucur Nezih Ergin1ORCID,Akın H Levent1

Affiliation:

1. Department of Computer Engineering, Bogazici University, Istanbul, Turkey

Abstract

Self-localization in autonomous robots is one of the fundamental issues in the development of intelligent robots, and processing of raw sensory information into useful features is an integral part of this problem. In a typical scenario, there are several choices for the feature extraction algorithm, and each has its weaknesses and strengths depending on the characteristics of the environment. In this work, we introduce a localization algorithm that is capable of capturing the quality of a feature type based on the local environment and makes soft selection of feature types throughout different regions. A batch expectation–maximization algorithm is developed for both discrete and Monte Carlo localization models, exploiting the probabilistic pose estimations of the robot without requiring ground truth poses and also considering different observation types as blackbox algorithms. We tested our method in simulations, data collected from an indoor environment with a custom robot platform and a public data set. The results are compared with the individual feature types as well as naive fusion strategy.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3