Infrared image segmentation based on multi-information fused fuzzy clustering method for electrical equipment

Author:

Qi Can1ORCID,Li Qingwu12,Liu Yan12,Ni Jinyan1,Ma Ruxiang3,Xu Zheng3

Affiliation:

1. College of Internet of Things Engineering, Hohai University, Changzhou, People’s Republic of China

2. Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, People’s Republic of China

3. State Grid Yancheng Power Supply Company, Yancheng, People’s Republic of China

Abstract

Serious noise pollution and background interference bring great difficulties to infrared image segmentation of electronic equipment. A novel infrared image segmentation method based on multi-information fused fuzzy clustering method is proposed in this article. Firstly, saliency detection is performed on the infrared image to obtain the saliency map, which determines the initial clustering center and enhances the contrast of the original infrared image. Secondly, the weighting exponent in the objective function is adjusted adaptively. Then local and global spatial constraints are added to the objective function of the fuzzy clustering method, which can reduce the noise and background interference. Finally, the Markov constrained field is calculated according to the initial segmentation result. After that the joint field of fuzzy clustering field and the Markov random field is constructed to obtain the optimized segmentation result. The algorithm is evaluated on the infrared images of electrical equipment, and the experimental results show that the proposed method is robust to noise and complicated background. Compared with other methods, the proposed method improves the average segmentation accuracy and T measure by about 10% and 13%.

Funder

the Key Research and Development Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3