Research on Algorithm for Improving Infrared Image Defect Segmentation of Power Equipment

Author:

Zhang Jingwen1,Zhu Wu1

Affiliation:

1. Department of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China

Abstract

The existing infrared image processing technology mainly relies on the traditional segmentation algorithm, which is not only inefficient, but also has problems such as blurred edges, poor segmentation accuracy, and insufficient extraction of key power equipment features for the infrared image defect segmentation of power equipment. A CS_DeeplabV3+ network for the accurate segmentation of the infrared image defect segmentation of power equipment is designed for the situation of leakage and false detection after segmentation by traditional algorithms. The ASPP module is improved in the encoder part to enable the network to obtain a denser pixel sampling, an improved attention mechanism is introduced to enhance the sensitivity and accuracy of the network for feature extraction, and a semantic segmentation feature enhancement module—the structured feature enhancement module (SFEM)—is introduced in the decoder part to enhance the feature processing to improve the segmentation accuracy. The CS_DeeplabV3+ network is validated using the dataset, and the experimental comparison proves that the improved model has finer contours compared with other models for segmenting infrared images of power equipment defects, and MPA is improved by 5.6% and MIOU is improved by 7.3% compared with the DeeplabV3+ network.

Funder

State Grid Shanghai Electric Power Company Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. On-line detection and diagnosis of transformer thermal fault based on infrared imaging technology;Cao;Lab. Res. Explor.,2012

2. Application of accurate infrared temperature measurement in condition maintenance of power equipment;Li;High Volt. Appar.,2022

3. The Application of the ubiquitous power Internet of Things in the state monitoring of power equipment;Liu;Power Syst. Prot. Control,2020

4. Live detection technology of deteriorated insulator based on UAV inspection platform;Zhang;Sci. Technol. Eng.,2020

5. Insulator contamination level recognition based on infrared and visible light image information fusion;Jin;Proc. CSEE,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3