Multiobjective model-free learning for robot pathfinding with environmental disturbances

Author:

Wei Changyun1ORCID,Ni Fusheng1

Affiliation:

1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu, China

Abstract

This article addresses the robot pathfinding problem with environmental disturbances, where a solution to this problem must consider potential risks inherent in an uncertain and stochastic environment. For example, the movements of an underwater robot can be seriously disturbed by ocean currents, and thus any applied control actions to the robot cannot exactly lead to the desired locations. Reinforcement learning is a formal methodology that has been extensively studied in many sequential decision-making domains with uncertainty, but most reinforcement learning algorithms consider only a single objective encoded by a scalar reward. However, the robot pathfinding problem with environmental disturbances naturally promotes multiple conflicting objectives. Specifically, in this work, the robot has to minimise its moving distance so as to save energy, and, moreover, it has to keep away from unsafe regions as far as possible. To this end, we first propose a multiobjective model-free learning framework, and then proceed to investigate an appropriate action selection strategy by improving a baseline with respect to two dimensions. To demonstrate the effectiveness of the proposed learning framework and evaluate the performance of three action selection strategies, we also carry out an empirical study in a simulated environment.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3