Kinematic analysis of seven-degree-of-freedom exoskeleton rehabilitation manipulator

Author:

Tang Gang1,Sheng Jinqin1,Wu Chuan1ORCID,Wang Dongmei2,Men Shaoyang3

Affiliation:

1. Logistics Engineering College, Shanghai Maritime University, Shanghai, China

2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

3. School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China

Abstract

This article analyzes the forward kinematics and inverse kinematics of the seven-degree-of-freedom exoskeleton rehabilitation manipulator. Denavit–Hartenberg coordinates are used to model the forward kinematics, and the working space of the end effector of the manipulator is analyzed according to the joint motion range of the human arm. In the inverse solution of the seven-degree-of-freedom exoskeleton rehabilitation manipulator, the self-motion angle [Formula: see text] of the elbow is used. The minimum energy standard is used to calculate the self-motion angle [Formula: see text]. The minimum energy mainly includes the gravitational potential energy of the upper limbs and the elastic potential energy stored in the muscles. Thus, the inverse solution formula of the seven-degree-of-freedom exoskeleton rehabilitation manipulator is derived. When calculating the angle [Formula: see text], an auxiliary parameter is introduced to solve the self-motion manifold of the manipulator. Finally, the theoretical derivation and verification of the forward and inverse kinematics are carried out in this article, and through analysis of the results, it is concluded that the inverse kinematics of this article has some limitations but the theory of inverse kinematics is feasible.

Funder

Youth Creative Talent Project (Natural Science) of Guangdong

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3