Trajectory generator design based on the user's intentions for a CMC lower-limbs rehabilitation device

Author:

Seddiki L.,Guelton K.,Zaytoon J.,Akdag H.

Abstract

SUMMARYThis paper deals with the design of the control structure of a lower-limbs rehabilitation device in closed muscular chain called Sys-Reeduc. This control structure aims at providing a safe behavior to the user when performing rehabilitation exercises. It is based on two levels. The first level is concerned with the robust trajectory tracking of robotic device and has been the subject of previous studies. Nevertheless, it does not allow, by itself, the user to voluntarily drive the device. Therefore, a trajectory generator constituting the second level is presented in this paper to complete the whole control structure. This high-level control layer is described by a set of dedicated discrete state machines that provide the appropriate sequencing of elementary rehabilitation movements. These elementary movements are dynamically characterized so that clinician may choose the required trajectory parameters to adapt rehabilitation protocols and training to each individual. To realize a complete rehabilitation exercise, the sequence of elementary movements is triggered by thresholds relative to the measurement of the efforts applied by the user on the device. This allows the user to play an active role in its rehabilitation exercises and safely drive the machine at his/her own initiative. The design of the main exercises (isokinetic, isometric, and isotonic) used in the context of lower limbs rehabilitation is described, and simulation results illustrate the effectiveness of the proposed trajectory generator-based control approach.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference26 articles.

1. Fuzzy Control Systems Design and Analysis

2. L. Seddiki , K. Guelton , L. Afilal and J. Zaytoon , “A 6 Degrees of Freedom Kinematical Model of the Knee for the Design of a New Rehabilitation Device,” Proceedings of the 3rd European Medical and Biological Engineering Conference, Prague, Czech Republic (Nov. 2005) pp. 1–4.

3. Dermarob: a safe robot for reconstructive surgery

4. The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot

5. Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-DOF Robotic Orthosis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3