Gaussian process regression-based robust free space detection for autonomous vehicle by 3-D point cloud and 2-D appearance information fusion

Author:

Xiao Zhipeng12,Dai Bin1,Li Hongdong2,Wu Tao1,Xu Xin1,Zeng Yujun1,Chen Tongtong1

Affiliation:

1. College of Mechatronic Engineering and Automation, National University of Defense Technology, Hunan, People’s Republic of China

2. College of Engineering and Computer Science, Australian National University and NICTA, Australia

Abstract

Free space detection is crucial to autonomous vehicles while existing works are not entirely satisfactory. As cameras have many advantages on environment perception, a stereo vision-based robust free space detection method is proposed which mainly depends on geometry information and Gaussian process regression. In this work, in order to improve the performance by exploiting multiple source information, we apply Bayesian framework and conditional random field inference to fuse the multimodal information including 2-D image and 3-D point geometric information. Particularly, a Bayesian framework is used for multiple feature fusion to provide a normalized and flexible output. Gaussian process regression is used to automatically and incrementally regress the data, resulting enhanced performance. Finally, conditional random field with color and geometry constrains is applied to make the result more robust. In order to evaluate the proposed method, quantitative experiments on popular KITTI-road data set and qualitative experiments on our own campus data set are tested. The results show satisfactory and inspiring performance compared to the outstanding works and even are competitive to some relevant Lidar-based methods.

Funder

National Nature Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3