A monocular vision–based perception approach for unmanned aerial vehicle close proximity transmission tower inspection

Author:

Bian Jiang1ORCID,Hui Xiaolong1ORCID,Zhao Xiaoguang1,Tan Min1

Affiliation:

1. The State Key Laboratory of Management and Control for Complex System, Institute of Automation Chinese Academy of Sciences, Beijing, China

Abstract

Employing unmanned aerial vehicles to conduct close proximity inspection of transmission tower is becoming increasingly common. This article aims to solve the two key problems of close proximity navigation—localizing tower and simultaneously estimating the unmanned aerial vehicle positions. To this end, we propose a novel monocular vision–based environmental perception approach and implement it in a hierarchical embedded unmanned aerial vehicle system. The proposed framework comprises tower localization and an improved point–line-based simultaneous localization and mapping framework consisting of feature matching, frame tracking, local mapping, loop closure, and nonlinear optimization. To enhance frame association, the prominent line feature of tower is heuristically extracted and matched followed by the intersections of lines are processed as the point feature. Then, the bundle adjustment optimization leverages the intersections of lines and the point-to-line distance to improve the accuracy of unmanned aerial vehicle localization. For tower localization, a transmission tower data set is created and a concise deep learning-based neural network is designed to perform real-time and accurate tower detection. Then, it is in combination with a keyframe-based semi-dense mapping to locate the tower with a clear line-shaped structure in 3-D space. Additionally, two reasonable paths are planned for the refined inspection. In experiments, the whole unmanned aerial vehicle system developed on Robot Operating System framework is evaluated along the paths both in a synthetic scene and in a real-world inspection environment. The final results show that the accuracy of unmanned aerial vehicle localization is improved, and the tower reconstruction is fast and clear. Based on our approach, the safe and autonomous unmanned aerial vehicle close proximity inspection of transmission tower can be realized.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3