Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review

Author:

Cao Zhen12ORCID,Kooistra Lammert3ORCID,Wang Wensheng4,Guo Leifeng2ORCID,Valente João1ORCID

Affiliation:

1. Information Technology Group, Wageningen University & Research, 6700EW Wageningen, The Netherlands

2. Agricultural Information Institute, Chinese Academy of Agriculture Science, Beijing 100081, China

3. Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, 6700AA Wageningen, The Netherlands

4. Information Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China

Abstract

Real-time object detection based on UAV remote sensing is widely required in different scenarios. In the past 20 years, with the development of unmanned aerial vehicles (UAV), remote sensing technology, deep learning technology, and edge computing technology, research on UAV real-time object detection in different fields has become increasingly important. However, since real-time UAV object detection is a comprehensive task involving hardware, algorithms, and other components, the complete implementation of real-time object detection is often overlooked. Although there is a large amount of literature on real-time object detection based on UAV remote sensing, little attention has been given to its workflow. This paper aims to systematically review previous studies about UAV real-time object detection from application scenarios, hardware selection, real-time detection paradigms, detection algorithms and their optimization technologies, and evaluation metrics. Through visual and narrative analyses, the conclusions cover all proposed research questions. Real-time object detection is more in demand in scenarios such as emergency rescue and precision agriculture. Multi-rotor UAVs and RGB images are of more interest in applications, and real-time detection mainly uses edge computing with documented processing strategies. GPU-based edge computing platforms are widely used, and deep learning algorithms is preferred for real-time detection. Meanwhile, optimization algorithms need to be focused on resource-limited computing platform deployment, such as lightweight convolutional layers, etc. In addition to accuracy, speed, latency, and energy are equally important evaluation metrics. Finally, this paper thoroughly discusses the challenges of sensor-, edge computing-, and algorithm-related lightweight technologies in real-time object detection. It also discusses the prospective impact of future developments in autonomous UAVs and communications on UAV real-time target detection.

Funder

National Key R&D Program of China

Science and Technology Planning Project of the Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications ML in UAVs-Based Detecting and Tracking Objects and People;Applications of Machine Learning in UAV Networks;2024-02-09

2. Impact of Mixed Multimodalities and Size Dependence on Performance of Object Detection on Multimodal Satellite Imagery*;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3