Asynchronous event feature generation and tracking based on gradient descriptor for event cameras

Author:

Li Ruoxiang1ORCID,Shi Dianxi23,Zhang Yongjun2,Li Ruihao23ORCID,Wang Mingkun1

Affiliation:

1. National University of Defense Technology, Changsha, China

2. Artificial Intelligence Research Center (AIRC), National Innovation Institute of Defense Technology (NIIDT), Beijing, China

3. Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China

Abstract

Recently, the event camera has become a popular and promising vision sensor in the research of simultaneous localization and mapping and computer vision owing to its advantages: low latency, high dynamic range, and high temporal resolution. As a basic part of the feature-based SLAM system, the feature tracking method using event cameras is still an open question. In this article, we present a novel asynchronous event feature generation and tracking algorithm operating directly on event-streams to fully utilize the natural asynchronism of event cameras. The proposed algorithm consists of an event-corner detection unit, a descriptor construction unit, and an event feature tracking unit. The event-corner detection unit addresses a fast and asynchronous corner detector to extract event-corners from event-streams. For the descriptor construction unit, we propose a novel asynchronous gradient descriptor inspired by the scale-invariant feature transform descriptor, which helps to achieve quantitative measurement of similarity between event feature pairs. The construction of the gradient descriptor can be decomposed into three stages: speed-invariant time surface maintenance and extraction, principal orientation calculation, and descriptor generation. The event feature tracking unit combines the constructed gradient descriptor and an event feature matching method to achieve asynchronous feature tracking. We implement the proposed algorithm in C++ and evaluate it on a public event dataset. The experimental results show that our proposed method achieves improvement in terms of tracking accuracy and real-time performance when compared with the state-of-the-art asynchronous event-corner tracker and with no compromise on the feature tracking lifetime.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing robustness in asynchronous feature tracking for event cameras through fusing frame steams;Complex & Intelligent Systems;2024-06-24

2. Artificial intelligence-based spatio-temporal vision sensors: applications and prospects;Frontiers in Materials;2023-12-07

3. An event-driven asynchronous feature tracking method;2023 WRC Symposium on Advanced Robotics and Automation (WRC SARA);2023-08-19

4. Continuous-Time Gaussian Process Motion-Compensation for Event-Vision Pattern Tracking with Distance Fields;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3