Enhancing robustness in asynchronous feature tracking for event cameras through fusing frame steams

Author:

Xu HaidongORCID,Yu ShumeiORCID,Jin Shizhao,Sun Rongchuan,Chen GuodongORCID,Sun LiningORCID

Abstract

AbstractEvent cameras produce asynchronous discrete outputs due to the independent response of camera pixels to changes in brightness. The asynchronous and discrete nature of event data facilitate the tracking of prolonged feature trajectories. Nonetheless, this necessitates the adaptation of feature tracking techniques to efficiently process this type of data. In addressing this challenge, we proposed a hybrid data-driven feature tracking method that utilizes data from both event cameras and frame-based cameras to track features asynchronously. It mainly includes patch initialization, patch optimization, and patch association modules. In the patch initialization module, FAST corners are detected in frame images, providing points responsive to local brightness changes. The patch association module introduces a nearest-neighbor (NN) algorithm to filter new feature points effectively. The patch optimization module assesses optimization quality for tracking quality monitoring. We evaluate the tracking accuracy and robustness of our method using public and self-collected datasets, focusing on average tracking error and feature age. In contrast to the event-based Kanade–Lucas–Tomasi tracker method, our method decreases the average tracking error ranging from 1.3 to 29.2% and boosts the feature age ranging from 9.6 to 32.1%, while ensuring the computational efficiency improvement of 1.2–7.6%. Thus, our proposed feature tracking method utilizes the unique characteristics of event cameras and traditional cameras to deliver a robust and efficient tracking system.

Funder

Key Technologies Research and Development Program

Jiangsu Provincial Key Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3