Dynamic visual servoing with Kalman filter-based depth and velocity estimator

Author:

Chang Ting-Yu1,Chang Wei-Che1,Cheng Ming-Yang1ORCID,Yang Shih-Sian1

Affiliation:

1. Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

Abstract

Camera calibration error, vision latency, nonlinear dynamics, and so on present a major challenge for designing the control scheme for a visual servoing system. Although many approaches on visual servoing have been proposed, surprisingly, only a few of them have taken into account system dynamics in the control design of a visual servoing system. In addition, the depth information of feature points is essential in the image-based visual servoing architecture. As a result, to cope with the aforementioned problems, this article proposes a Kalman filter-based depth and velocity estimator and a modified image-based dynamic visual servoing architecture that takes into consideration the system dynamics in its control design. In particular, the Kalman filter is exploited to deal with the problems caused by vision latency and image noise so as to facilitate the estimation of the joint velocity of the robot using image information only. Moreover, in the modified image-based dynamic visual servoing architecture, the computed torque control scheme is used to compensate for system dynamics and the Kalman filter is used to provide accurate depth information of the feature points. Results of visual servoing experiments conducted on a two-degree of freedom planar robot verify the effectiveness of the proposed approach.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Second-Order Position-Based Visual Servoing of a Robot Manipulator;IEEE Robotics and Automation Letters;2024-01

2. A binocular stereo visual servo system for bird repellent in substations;Multimedia Tools and Applications;2023-02-23

3. Skeleton-based Adaptive Visual Servoing for Control of Robotic Manipulators in Configuration Space;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

4. Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine;Machines;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3