Affiliation:
1. National Innovation Institute of Defense Technology (NIIDT), Academy of Military Sciences, Beijing, People’s Republic of China
2. Tianjin Artificial Intelligence Innovation (TAIIC), Tianjin, People’s Republic of China
Abstract
This article presents a novel path planning algorithm for autonomous land vehicles. There are four main contributions: Firstly, an evaluation standard is introduced to measure the performance of different algorithms and to select appropriate parameters for the proposed algorithm. Secondly, a guideline generated by human or global planning is employed to develop the heuristic function to overcome the shortcoming of traditional A-Star algorithms. Thirdly, for improving the obstacle avoidance performance, key points around the obstacle are employed, which would guide the planning path to avoid the obstacle much earlier than the traditional one. Fourth, a novel variable-step based A-Star algorithm is also introduced to reduce the computing time of the proposed algorithm. Compared with the state-of-the-art techniques, experimental results show that the performance of the proposed algorithm is robust and stable.
Funder
National Natural Science Foundation of China
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献