An image vision and automatic calibration system for universal robots

Author:

Jian Bo-Lin1,Tsai Chi-Shiuan1,Kuo Ying-Che1ORCID,Guo Yu-Sying1

Affiliation:

1. Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung

Abstract

The rapid development of technology is causing the replacement of many traditional manufacture industries by automation. Robotic arms are now commonly used in many sectors. The requirements for robotic arms in different sectors are quite different; but, in general, robotic arms not only save cost and man power, they also improve safety. The aim of this study was an investigation of the integration of image identification with robotic arms. To do this, the Denavit–Hartenberg transformation matrix was used to analyze the mechanical kinematics of the joints of each robotic arm axis. This allowed the spatial relationships between the Cartesian 3 D coordinate system and the joint of each axis to be determined and communication between the robotic arm and image identification to be established. A robotic arm prototype platform with automatic image identification and calibration was constructed using a quick and robust method. Several of the variables that exist in real robotic arm applications have been solved in this study: primarily the accuracy error that occurs when repeated gripping of workpieces is done and a movement and placement track is set up. Deviations occur frequently and if image identification can be applied to offset repeated inaccuracy, the quality of finished products will be more consistent. The Universal Robots 5 six-axis robot and cameras, which use a filter, Sobel computation, and Hough transformation computer vision image processing technology, together comprise a system that can automatically identify the workpiece and carry out loading and unloading accurately.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed-Form Continuous-Time Neural Networks for Sliding Mode Control with Neural Gravity Compensation;Robotics;2024-08-23

2. A Hybrid Digital Twin Scheme for the Condition Monitoring of Industrial Collaborative Robots;Procedia Computer Science;2024

3. A Comparison of the Application of Artificial Intelligence in the Educational System;2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA);2022-11

4. Image Processing based UR5E Manipulator Robot Control in Pick and Place Application for Random Position and Orientation of Object;2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE);2021-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3