Closed-Form Continuous-Time Neural Networks for Sliding Mode Control with Neural Gravity Compensation

Author:

Urrea Claudio1ORCID,Garcia-Garcia Yainet1ORCID,Kern John1ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170020, Chile

Abstract

This study proposes the design of a robust controller based on a Sliding Mode Control (SMC) structure. The proposed controller, called Sliding Mode Control based on Closed-Form Continuous-Time Neural Networks with Gravity Compensation (SMC-CfC-G), includes the development of an inverse model of the UR5 industrial robot, which is widely used in various fields. It also includes the development of a gravity vector using neural networks, which outperforms the gravity vector obtained through traditional robot modeling. To develop a gravity compensator, a feedforward Multi-Layer Perceptron (MLP) neural network was implemented. The use of Closed-Form Continuous-Time (CfC) neural networks for the development of a robot’s inverse model was introduced, allowing efficient modeling of the robot. The behavior of the proposed controller was verified under load and torque disturbances at the end effector, demonstrating its robustness against disturbances and variations in operating conditions. The adaptability and ability of the proposed controller to maintain superior performance in dynamic industrial environments are highlighted, outperforming the classic SMC, Proportional-Integral-Derivative (PID), and Neural controllers. Consequently, a high-precision controller with a maximum error rate of approximately 1.57 mm was obtained, making it useful for applications requiring high accuracy.

Funder

Faculty of Engineering of the University of Santiago of Chile and Agencia Nacional de Investigación y Desarrollo de Chile

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3