Effect of developmental lead exposure on neurogenesis and cortical neuronal morphology in Wistar rats

Author:

Mousa Alyaa M A1,Elshahat Mona A2,Renno Waleed M1ORCID

Affiliation:

1. Department of Anatomy, Faculty of Medicine, Kuwait University, Safat, Kuwait

2. Anatomy Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt

Abstract

Lead (Pb) is a neurotoxic heavy metal that largely affects the developing nervous system. The present study examined the temporal effect of perinatal Pb exposure on neurogenesis and cortical neuronal morphology. Wistar pregnant rats were exposed to 0.5% lead acetate throughout pregnancy and to postnatal day (PD) 28. Offspring were grouped as gestational day (GD) 18 and 21 and PD 7, 14, 21, and 28 in both control and experimental groups. Brain sections were processed for immunohistological staining with anti-proliferating cell nuclear antigen (PCNA) or glial fibrillary acidic protein (GFAP). Brains from 14, 21, and 28 PDs pups were processed for Golgi–Cox stain. Pb exposure significantly increased PCNA-positive nuclei in the ventricular and subventricular zones of the lateral ventricle at 18 and 21 GDs. Postnatally, the Pb-treated groups showed a significant decrease in PCNA-positivity and neuron density compared to control. This reduction was associated with an increase in damaged or apoptotic cell profiles in the experimental groups. At PD 21, there was a significant increase in GFAP immunoreactivity in Pb-exposed groups compared with control. Furthermore, the total apical and basal dendritic length of pyramidal neurons in layer 2–3 of the Golgi–Cox stained sensorimotor cortex was comparable in both control and Pb-exposed groups. Spine density per 10 µm was significantly increased at PD 14 and 21 on the apical dendrites but not basal dendrites of Pb-treated groups. In conclusion, developmental Pb exposure in rats induces a toxic effect on neurogenesis and on cortical neurons, which may be related to cognitive disabilities observed in children exposed to lead.

Funder

Kuwait University

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3