Possible role of selenium in ameliorating lead-induced neurotoxicity in the cerebrum of adult male rats: an experimental study

Author:

Hegazy Abdelmonem AwadORCID,Domouky Ayat M.,Akmal Fatma,El-wafaey Dalia Ibrahim

Abstract

AbstractChronic lead (Pb) poisoning is one of the greatest public health risks. The nervous system is the primary and most vulnerable target of Pb poisoning. Selenium (Se) has been shown to be a potential protection against heavy metal toxicity through anti-inflammatory and antioxidant properties. Therefore, the present study aimed to elucidate the possible protective role of Se in ameliorating the effects of Pb on rat cerebral structure by examining oxidative stress and markers of apoptosis. The rats were divided into 6 groups: control group, Se group, low Pb group, high Pb group, low Pb + Se group, high Pb + Se group. After the 4-week experiment period, cerebral samples were examined using biochemical and histological techniques. Pb ingestion especially when administered in high doses resulted in cerebral injury manifested by a significant increase in glial fibrillary acidic protein, malondialdehyde (MDA) marker of brain oxidation and DNA fragmentation. Moreover, Pb produced alteration of the normal cerebral structure and cellular degeneration with a significant reduction in the total number of neurons and thickness of the frontal cortex with separation of meninges from the cerebral surface. There was also a decrease in total antioxidant capacity. All these changes are greatly improved by adding Se especially in the low Pb + Se group. The cerebral structure showed a relatively normal histological appearance with normally attached pia and an improvement in neuronal structure. There was also a decrease in MDA and DNA fragmentation and an increase TAC. Selenium is suggested to reduce Pb-induced neurotoxicity due to its modulation of oxidative stress and apoptosis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3