Affiliation:
1. The University of Texas at Austin
2. University of Maryland-College Park
Abstract
Simulated datasets were used to research the effects of the systematic variation of three major variables on the performance of computerized adaptive testing (CAT) procedures for the partial credit model. The three variables studied were the stopping rule for terminating the CATs, item pool size, and the distribution of the difficulty of the items in the pool. Results indicated that the standard error stopping rule performed better across the variety of CAT conditions than the minimum information stopping rule. In addition it was found that item pools that consisted of as few as 30 items were adequate for CAT provided that the item pool was of medium difficulty. The implications of these findings for implementing CAT systems based on the partial credit model are discussed.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献