Affiliation:
1. University of Texas at Austin
Abstract
Real and simulated datasets were used to investigate the effects of the systematic variation of two major variables on the operating characteristics of computerized adaptive testing (CAT) applied to instruments consisting of poly- chotomously scored rating scale items. The two variables studied were the item selection procedure and the stepsize method used until maximum likelihood trait estimates could be calculated. The findings suggested that (1) item pools that consist of as few as 25 items may be adequate for CAT; (2) the variable stepsize method of preliminary trait estimation produced fewer cases of nonconvergence than the use of a fixed stepsize procedure; and (3) the scale value item selection procedure used in conjunction with a minimum standard error stopping rule outperformed the information item selection technique used in conjunction with a minimum information stopping rule in terms of the frequencies of nonconvergent cases, the number of items administered, and the correlations of CAT 0 estimates with full scale estimates and known 0 values. The implications of these findings for implementing CAT with rating scale items are discussed. Index terms:
Subject
Psychology (miscellaneous),Social Sciences (miscellaneous)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献