Single and repeated low-velocity impact response of E-glass fiber-reinforced epoxy and polypropylene composites for different impactor shapes

Author:

Dogan Akar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Munzur University, Tunceli, Turkey

Abstract

This study focuses on the effects of low-velocity impact (LVI) response of thermoset (TS) and thermoplastic (TP) matrix-based composites. In this study, the effects of the impactor shapes on the low-velocity impact response of the composite panels that produced from different matrix was investigated. Unidirectional E-glass fiber fabrics with an areal density of 300 g/m2 as reinforcement and epoxy matrix were used to produce TS composite. The vacuum-assisted resin infusion molding (VARIM) method was used to manufacture composite panels. The thermoplastic composites were manufactured with E-glass fiber-reinforced polypropylene prepregs. The tensile strength of TS matrix-based composites is higher than TP matrix-based composites that have the same fiber volume fraction. Despite being under the same impact energy, the TP specimens possess higher perforation threshold than TS specimens. The shape of the impactor significantly affected the perforation threshold. Besides, the impact number that caused perforation reduced dramatically in conical impactor. The repeated impact number that caused perforation is 36 for hemispherical (HS) impactor, but it is only 3 for conical impactor for polypropylene matrix-based composite. Moreover, a significant effect of fiber volumetric ratio on impact resistance was observed. The perforation threshold of glass fiber-reinforced polypropylene composites for 40% and 50% fiber volume fraction are 61 and 98 J, respectively. The perforation threshold of TP and TS specimens for HS impactor that has the same stacking sequence is 61 and 55 J, respectively.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3