Evaluation of the low-velocity impact response of high-performance multi-axial warp-knitted flexible composites

Author:

Li Bing1,Zhao Ziyu1,Ma Pibo1ORCID

Affiliation:

1. Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, China

Abstract

This article aims to investigate the dynamic behavior of high-performance multi-axial warp-knitted flexible composite materials under low-velocity impact tests through experiments and numerical simulations. In this paper, high-performance multi-axial warp-knitted flexible composites were prepared. Three different preparation processes, 175°C-5 min, 185°C-10 min, and 195°C-15 min, were designed for the multi-axial warp-knitted flexible composites. Studied the impact response of different preparation processes, initial impact energy, and punch shapes and diameters on materials. The results showed that the flexible composites prepared by various processes exhibit the same impact response curves in the impact resistance process, while the damage morphology and failure modes of the samples are different. Different initial impact energies caused multiple failure modes in the samples. The material showed penetration damage at high energy impacts and permanent depression damage at low energies. For different punch shapes, the impact resistance of materials to hemispherical punches is better than that of cylindrical punches. Numerical simulations were carried out using the finite element software ABAQUS. The custom material subroutine (VUMAT) based on the Hashin damage criterion model was implemented in the finite element program. The experimental and numerical simulation results agree regarding impact response characteristics. This paper analyzes the composite damage shapes, crack extensions caused by low-velocity impact tests and finite element simulation on multi-axial warp-knitted flexible composites. It provides a valuable reference for failure and structural optimization of multi-axial warp-knitted flexible composites for architectural applications.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3