Bacterial community patterns and thermal analyses of composts of various origins

Author:

Klammer Susanne1,Knapp Brigitte1,Insam Heribert2,Dell'Abate Maria Teresa3,Ros Margarita4

Affiliation:

1. Institute of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria

2. Institute of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria,

3. CRA-RPS Centro di ricerca per lo studio dell relazioni tra pianta e suolo, Via della Navicella 2, 00184 Roma, Italy

4. Department of Soil and Water Conservation and Management of Organic Wastes, Centro de Edafologia y Biologia aplicada del Segura. CEBAS-CSIC, PO Box 164, 30100 Espinardo-Murcia, Spain

Abstract

During composting, the degradation of organic waste is accompanied and driven by a succession of microbial populations exhibiting a broad range of functional capabilities. Detailed inventories of the microbial communities in mature compost, however, are not available. Mature composts, originating from biowaste as well as sewage sludge and anaerobic sludge, were studied by denaturing gradient gel electrophoresis-fingerprints after polymerase chain reaction (PCR) amplification of the 16S rRNA genes using three different universal primer pairs, as well as by differential scanning calorimetry and thermogravimetry. The composts of different origin had different bacterial communities. The influence of different 16S rDNA primer sets on the same batches of compost DNA was evaluated. The clearest separation of different compost types was obtained by using the PCR primer pair 338f + 518r which is suggested for future applications. Communities from the different biowaste compost samples clustered together and could be separated from sewage sludge communities indicating the establishment of different microbial consortia. A similar differentiation of composts was found with the thermogavimetric analyses. It may thus be concluded that the resulting humus quality is closely linked to the microbial communities involved.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3