Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies

Author:

De Corato Ugo

Abstract

AbstractSoil microbiota plays a key role in suppressing soil-borne plant pathogens improving the natural soil suppressiveness. Microbiome disturbance triggers specific perturbation to change and shape the soil microbial communities’ network for increasing suppression against phytopathogens and related diseases. Very important goals have been reached in manipulation of soil microbiota through agronomical practices based on soil pre-fumigation, organic amendment, crop rotation and intercropping. Nevertheless, to limit inconsistencies, drawbacks and failures related to soil microbiota disturbance, a detailed understanding of the microbiome shifts during its manipulation is needed under the light of the microbiome-assisted strategies. Next-generation sequencing often offers a better overview of the soil microbial communities during microbiomes manipulation, but sometime it does not provide information related to the highest taxonomic resolution of the soil microbial communities. This review work reports and discusses the most reliable findings in relation to a comprehensive understanding of soil microbiota and how its manipulation can improve suppression against soil-borne diseases in organic farming systems. Role and functionality of the soil microbiota in suppressing soil-borne pathogens affecting crops have been basically described in the first section of the paper. Characterization of the soil microbiomes network by high-throughput sequencing has been introduced in the second section. Some relevant findings by which soil microbiota manipulation can address the design of novel sustainable cropping systems to sustain crops’ health without use (or reduced use) of synthetic fungicides and fumigants have been extensively presented and discussed in the third and fourth sections, respectively, under the light of the new microbiome-assisted strategies. Critical comparisons on the next-generation sequencing have been provided in the fifth section. Concluding remarks have been drawn in the last section.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3