Influence of different mixing ratios on in-vessel co-composting of sewage sludge with horse stable straw bedding waste: maturity and process evaluation

Author:

Wong Jonathan W. C.1,Selvam Ammaiyappan1,Zhao Zhenyong1,Yu S. M.2,Law Alex C. W.3,Chung Patricia C. P.4

Affiliation:

1. Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong SAR

2. Electrical and Mechanical Services Department, Hong Kong SAR

3. Jardine Engineering Corporation Ltd., Hong Kong SAR

4. New Green Environmental Science Ltd., Hong Kong SAR

Abstract

Composting sewage sludge alone would reduce the decomposition efficiency due to free limited porosity in sludge. To alleviate this, the use of horse stable straw bedding waste (HSB) was evaluated as a co-composting material with sewage sludge in a 10 tonnes day−1 in-vessel composter for a period of 7 days before curing in a static aeration pile. Sludge was mixed with HSB at 1 : 1.5 (HSL) and 1 : 2.9 (LSL) on a fresh weight basis. After a composting period of 56 days, both mixing ratios demonstrated to be feasible with LSL having a better organic decomposition and a shorter time to reach maturity. The overall decomposition rates were 52.0 and 58.9% (dry weight basis) for HSL and LSL, respectively. In both treatments, temperature in the in-vessel composters could reach 65°C, which was sufficient to remove the pathogens. Although both products were free of pathogens, HSL exhibited a higher ammoniacal nitrogen contents but a lower seed germination index than that of LSL indicating a higher phytotoxicity and a longer curing period would be required. It can be concluded that HSB provided a better composting conditions at a mixing ratio of 1 : 2.9

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3