The changes of willow biomass characteristics during the composting process and their phytotoxicity effect on Sinapis alba L.

Author:

Sowiński JózefORCID,Jama-Rodzeńska Anna,Perera Peliyagodage Chathura DinethORCID,Jamroz ElżbietaORCID,Bekier Jakub

Abstract

This study evaluated in 2019–2021 the use of willow chips for compost production and its effect on Sinapis alba L. germination index and seedling growth. Peatlands and peat are of very important economic but above all environmental significance. The conservation of peatland resources is one of the most crucial future challenges. Composts and other forms of lignin-cellulosic biomass are potentially the best renewable alternative to peat in its economic use. Composted lignin-cellulosic biomass can replace peat and be used as a substrate for vegetable transplant production. The impact of modifying the willow lignin-cellulosic biomass composting process has not been well analysed. A compost experiment with willow biomass was conducted to study its effect on selected compost indexes (particle size structure in %, bulk density (kg m-3), and total nitrogen content). The quality assessment of the willow composts was determined after six months of composting process based on the N content and morphological characteristics of tested plant in vegetative chamber. Sinapis alba L. was germinated on a water extract made from willow compost using the following additives to willow biomasses: W0—without additives, WN—with the addition of nitrogen, WF—with the addition of mycelium, WNF—with the addition of nitrogen and mycelium. During the composting process, samples were taken after each mixing of the biomass pile to assess their maturity through the use of a bioassay. Willow biomass did not have a negative effect on biological evaluation parameters, and in some indicators, such as the length of embryonic roots in the VI period of the measurements, it was stimulating (61–84% longer in W0 and WF than in the control). The addition of nitrogen during the composting process, especially in the initial composting period, had a strong inhibitory effect.

Funder

Leading Research Groups support project

Wroclaw University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Soil C Sequestration as a Biological Negative Emission Strategy;K. Paustian;Front. Clim,2019

2. Peatlands and Global Change: Response and Resilience Annu;S.E. Page;Rev. Environ. Resour.,2016

3. Agriculture, Forestry and Other Land Use (AFOLU)In Climate ChangeMitigation of Climate Change;P. Smith;Contribution of Working Group III to the Fifth Assessment Report of the Intergovernm,2014

4. Wise Use of Mires and Peatlands;H. Joosten;Jyvaskyl¨a, Finl.: Int. Mire Conserv. Group Int. Peat Soc,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3