Affiliation:
1. COLLEGE OF ENGINEERING AND CENTER FOR COGNITIVE SCIENCE
OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210-1275
Abstract
A concurrent adaptive conjugate gradient learning al gorithm has been developed for training of multilayer feed-forward neural networks and implemented in C on a MIMD shared-memory machine (CRAY Y-MP/8- 864 supercomputer). The learning algorithm has been applied to the domain of image recognition. The per formance of the algorithm has been evaluated by ap plying it to two large-scale training examples with 2,304 training instances. The concurrent adaptive neural networks algorithm has superior convergence property compared with the concurrent momentum back-propagation algorithm. A maximum speedup of about 7.9 is achieved using eight processors for a large network with 4,160 links as a result of microtask ing only. When vectorization is combined with micro tasking, a maximum speedup of about 44 is realized using eight processors.
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献