Affiliation:
1. College of Computer Science, Sichuan University, Chengdu 610065, P. R. China
Abstract
Deep Feedforward Neural Networks (FNNs) with skip connections have revolutionized various image recognition tasks. In this paper, we propose a novel architecture called bidirectional FNN (BiFNN), which utilizes skip connections to aggregate features between its forward and backward paths. The BiFNN accepts any FNN as a plugin that can incorporate any general FNN model into its forward path, introducing only a few additional parameters in the cross-path connections. The backward path is implemented as a nonparameter layer, utilizing a discretized form of the neural memory Ordinary Differential Equation (nmODE), which is named [Formula: see text]-net. We provide a proof of convergence for the [Formula: see text]-net and evaluate its initial value problem. Our proposed architecture is evaluated on diverse image recognition datasets, including Fashion-MNIST, SVHN, CIFAR-10, CIFAR-100, and Tiny-ImageNet. The results demonstrate that BiFNNs offer significant improvements compared to embedded models such as ConvMixer, ResNet, ResNeXt, and Vision Transformer. Furthermore, BiFNNs can be fine-tuned to achieve comparable performance with embedded models on Tiny-ImageNet and ImageNet-1K datasets by loading the same pretrained parameters.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献