Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation

Author:

Zheng Xi1ORCID,Yang Yi2ORCID,Li Dehan1ORCID,Deng Yi2ORCID,Xie Yuexiong1ORCID,Yi Zhang1ORCID,Ma Litai2ORCID,Xu Lei1ORCID

Affiliation:

1. Machine Intelligence Laboratory, College of Computer Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China

2. Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Road, Chengdu 610041, P. R. China

Abstract

In the evaluation of cervical spine disorders, precise positioning of anatomo-physiological hallmarks is fundamental for calculating diverse measurement metrics. Despite the fact that deep learning has achieved impressive results in the field of keypoint localization, there are still many limitations when facing medical image. First, these methods often encounter limitations when faced with the inherent variability in cervical spine datasets, arising from imaging factors. Second, predicting keypoints for only 4% of the entire X-ray image surface area poses a significant challenge. To tackle these issues, we propose a deep neural network architecture, NF-DEKR, specifically tailored for predicting keypoints in cervical spine physiological anatomy. Leveraging neural memory ordinary differential equation with its distinctive memory learning separation and convergence to a singular global attractor characteristic, our design effectively mitigates inherent data variability. Simultaneously, we introduce a Multi-Resolution Focus module to preprocess feature maps before entering the disentangled regression branch and the heatmap branch. Employing a differentiated strategy for feature maps of varying scales, this approach yields more accurate predictions of densely localized keypoints. We construct a medical dataset, SCUSpineXray, comprising X-ray images annotated by orthopedic specialists and conduct similar experiments on the publicly available UWSpineCT dataset. Experimental results demonstrate that compared to the baseline DEKR network, our proposed method enhances average precision by 2% to 3%, accompanied by a marginal increase in model parameters and the floating-point operations (FLOPs). The code ( https://github.com/Zhxyi/NF-DEKR ) is available.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3