Deep deterministic policy gradient with constraints for gait optimisation of biped robots

Author:

Liu Xingyang1,Rong Haina1,Neri Ferrante23,Yue Peng4,Zhang Gexiang5

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China

2. Nature Inspired Computing and Engineering Research Group, School of Computer Science and Electronic Engineering, University of Surrey, Guildford, UK

3. School of Software, Nanjing University of Information Science and Technology, Jiangsu, China

4. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, China

5. School of Control Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China

Abstract

In this paper, we propose a novel Reinforcement Learning (RL) algorithm for robotic motion control, that is, a constrained Deep Deterministic Policy Gradient (DDPG) deviation learning strategy to assist biped robots in walking safely and accurately. The previous research on this topic highlighted the limitations in the controller’s ability to accurately track foot placement on discrete terrains and the lack of consideration for safety concerns. In this study, we address these challenges by focusing on ensuring the overall system’s safety. To begin with, we tackle the inverse kinematics problem by introducing constraints to the damping least squares method. This enhancement not only addresses singularity issues but also guarantees safe ranges for joint angles, thus ensuring the stability and reliability of the system. Based on this, we propose the adoption of the constrained DDPG method to correct controller deviations. In constrained DDPG, we incorporate a constraint layer into the Actor network, incorporating joint deviations as state inputs. By conducting offline training within the range of safe angles, it serves as a deviation corrector. Lastly, we validate the effectiveness of our proposed approach by conducting dynamic simulations using the CRANE biped robot. Through comprehensive assessments, including singularity analysis, constraint effectiveness evaluation, and walking experiments on discrete terrains, we demonstrate the superiority and practicality of our approach in enhancing walking performance while ensuring safety. Overall, our research contributes to the advancement of biped robot locomotion by addressing gait optimisation from multiple perspectives, including singularity handling, safety constraints, and deviation learning.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3