Language models for the prediction of SARS-CoV-2 inhibitors

Author:

Blanchard Andrew E1ORCID,Gounley John1,Bhowmik Debsindhu1,Chandra Shekar Mayanka1,Lyngaas Isaac1,Gao Shang1,Yin Junqi1,Tsaris Aristeidis1,Wang Feiyi1,Glaser Jens1ORCID

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

The COVID-19 pandemic highlights the need for computational tools to automate and accelerate drug design for novel protein targets. We leverage deep learning language models to generate and score drug candidates based on predicted protein binding affinity. We pre-trained a deep learning language model (BERT) on ∼9.6 billion molecules and achieved peak performance of 603 petaflops in mixed precision. Our work reduces pre-training time from days to hours, compared to previous efforts with this architecture, while also increasing the dataset size by nearly an order of magnitude. For scoring, we fine-tuned the language model using an assembled set of thousands of protein targets with binding affinity data and searched for inhibitors of specific protein targets, SARS-CoV-2 Mpro and PLpro. We utilized a genetic algorithm approach for finding optimal candidates using the generation and scoring capabilities of the language model. Our generalizable models accelerate the identification of inhibitors for emerging therapeutic targets.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference74 articles.

1. GlaserJ (2021) Binding Affinity Training Data Set URL https://huggingface.co/datasets/jglaser/binding_affinity

2. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19

3. Achdout H, Aimon A, Bar-David E et al. (2020) COVID moonshot: open science discovery of SARS-CoV-2 main protease inhibitors by combining crowdsourcing, high-throughput experiments, computational simulations, and machine learning. bioRxiv.

4. High Performance I/O For Large Scale Deep Learning

5. Randomized SMILES strings improve the quality of molecular generative models

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3