Abstract
AbstractPredicting protein-ligand binding affinity is crucial for drug discovery, as it enables efficient identification of drug candidates. We introduce PLAPT, a novel model utilizing transfer learning from pre-trained transformers like ProtBERT and ChemBERTa to predict binding affinities with high accuracy. Our method processes one-dimensional protein and ligand sequences, leveraging a branching neural network architecture for feature integration and affinity estimation. We demonstrate PLAPT’s superior performance through validation on multiple datasets, achieving state-of-the-art results while requiring significantly less computational resources for training compared to existing models. Our findings indicate that PLAPT offers a highly effective and accessible approach for accelerating drug discovery efforts.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献