Field test and numerical modeling of vehicle impact on a boulder with impact-induced fractures

Author:

Zhou Yaneng1,Reese Lynsey2,Qiu Tong2,Rado Zoltan3

Affiliation:

1. Department of Geosciences, The Pennsylvania State University, University Park, PA, USA

2. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA

3. The Thomas D. Larson Pennsylvania Transportation Institute, The Pennsylvania State University, University Park, PA, USA

Abstract

Landscape Vehicle Anti-Ram systems, typically comprising natural materials such as boulders, are effective in protecting sensitive structures against threats. However, fracturing of these materials under vehicular impact can be detrimental to the performance of Landscape Vehicle Anti-Ram systems. This study presents a field-scale crash test and LS-DYNA modeling of a Landscape Vehicle Anti-Ram system subjected to vehicular impact. The Landscape Vehicle Anti-Ram system consisted of three boulders connected through a reinforced concrete foundation embedded in compacted American Association of State Highway and Transportation Officials soil. The central boulder fractured upon vehicular impact. An advanced material model was adopted to model the rock fracture and crushing. The global response of the truck, including cab deformation and dynamic penetration, from the simulation showed good agreement with the field observations. The failure patterns of the boulder, including the fracture plane and minor crushing, also agreed well with the field observations. Through a parametric study, the dynamic penetration of the truck is found to be influenced by the elastic modulus and fracture energy of the boulder, and the Landscape Vehicle Anti-Ram system is more effective with a stiffer and tougher boulder.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Reference27 articles.

1. American Society for Testing and Materials (ASTM) F2656-07 (2007) Standard test method for vehicle crash testing of perimeter barriers. West Conshohocken, PA: ASTM International.

2. Finite-Element Crash Test Simulation of New York Portable Concrete Barrier with I-Shaped Connector

3. EXPERIMENTAL FRACTURE MECHANICS DATA FOR ROCKS AND MINERALS

4. Instability, Ductility, and Size Effect in Strain-Softening Concrete

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3