Field-scale testing and numerical investigation of soil-boulder interaction under vehicular impact using FEM and coupled FEM-SPH formulations

Author:

Reese Lynsey1,Qiu Tong1,Linzell Daniel2,Rado Zoltan1

Affiliation:

1. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA

2. Department of Civil Engineering, The University of Nebraska—Lincoln, Lincoln, NE, USA

Abstract

A computational approach that couples the Finite Element Method and the Smoothed Particle Hydrodynamics method may be advantageous for simulating the response of complex, physical systems involving large deformations. However, comparisons of this modeling technique against field-scale test data are remarkably sparse in literature. This study presents three field-scale tests involving vehicular impact into three landscape vehicular anti-ram barriers. Each barrier consisted of a single boulder embedded in compacted American Association of State Highway and Transportation Officials soil and physical testing resulted in one of the following outcomes: minimal boulder/soil movement (Test 1), moderate boulder/soil movement (Test 2), and severe boulder/soil movement and vehicle override (Test 3). For each test, two LS-DYNA models were developed: a model using a traditional finite element method approach for the entire soil region along with a model using a hybrid finite element method-smoothed particle hydrodynamics approach where the near-field soil region was simulated using smoothed particle hydrodynamics. For Tests 1 and 2, both the traditional finite element method approach and the hybrid finite element method-smoothed particle hydrodynamics approach were able to accurately match data collected from the field tests. However, for Test 3, the finite element method-only approach was not able to accurately predict the global response of the system under vehicular impact. On the other hand, the hybrid finite element method-smoothed particle hydrodynamics approach was able to capture global response of the system including boulder rotation, soil upheaval, and vehicle override.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3