Novel Characterization Procedure for Single Piezoelectric Fibers

Author:

Belloli Alberto1,Heiber Juliane2,Clemens Frank2,Ermanni Paolo3

Affiliation:

1. ETH Zurich, Centre of Structure Technologies, Leonhardstrasse 27, 8092 Zurich, Switzerland, Empa Swiss Federal Laboratories for Materials Testing and Research, Laboratory Mechanics for Modelling and Simulation, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland,

2. Empa - Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland

3. ETH Zurich, Centre of Structure Technologies, Leonhardstrasse 27, 8092 Zurich, Switzerland

Abstract

The characterization of the ferroelectric properties of piezoelectric ceramic fibers is paramount for optimizing their manufacturing processes, for quality control purposes, and for modeling the response of components and structures. Until now, fibers were generally characterized by measuring the so-called 1-3 composites, fiber arrays embedded in a polymer matrix. The fiber properties can then be extracted, provided the volume fraction and stiffness of each phase, the fiber piezoelectric charge constant as a function of the electrical field strength, and the matrix permittivity are known. This implies a large amount of time and experimental effort. This article presents a comprehensive procedure for the direct characterization of single piezoelectric ceramic fibers in terms of butterfly and polarization loops, as well as their blocking force. The experimental setup is composed of a waveform generator, a high-voltage amplifier, a dynamic mechanical analyzer, a current/charge measuring circuit, and an oscilloscope. The active circuitry used for reliably collecting the charge generated by a single fiber is presented in full detail. The very good repeatability of the measurements showed the proposed procedure to be robust. The comparison between single fiber measurements and the investigation of 1-3 composites revealed both procedures to be equal, at 99.9%, in determining the average strain and polarization properties. In addition, the single fiber measurement provides an estimation of the variation in fiber properties within a single production batch. This information is essential to understand how to optimize processing routes and build robust devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3