Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors

Author:

Shen Yanfeng1,Giurgiutiu Victor1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Abstract

This article presents predictive modeling of nonlinear guided wave propagation for structural health monitoring using both finite element method and analytical approach. In our study, the nonlinearity of the guided waves is generated by interaction with a nonlinear breathing crack. Two nonlinear finite element method techniques are used to simulate the breathing crack: (a) element activation/deactivation method and (b) contact analysis. Both techniques are available in ANSYS software package. The solutions obtained by these two finite element method techniques compare quite well. A parametric analytical predictive model is built to simulate guided waves interacting with linear/nonlinear structural damage. This model is coded into MATLAB, and the WaveFormRevealer graphical user interface is developed to obtain fast predictive waveform solutions for arbitrary combinations of sensor, structural properties, and damage. The predictive model is found capable of describing the nonlinear wave propagation phenomenon. This article finishes with summary and conclusions followed by recommendations for further work.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3