Affiliation:
1. College of General Education, Chongqing Industry Polytechnic College, Chongqing 401120, China
2. Department of Mechanics, Beijing Jiaotong University, Beijing 100044, China
Abstract
When an ultrasonic pulse propagates in a thin plate, nonlinear Lamb waves with higher harmonics and a zero-frequency component (ZFC) will be generated because of the nonlinearity of materials. The ZFC, also known as the static displacement or static component, has its unique application on the evaluation of early-stage damages in the elastic symmetrical undulated plate. In this study, analysis of the excitation mechanism of the ZFC and the second harmonic component (SHC) was theoretically and numerically investigated, and the material early-stage damage of a symmetrical undulated was characterized by studying the propagation of nonlinear Lamb waves. Both the ZFC and SHC can be effectively employed in monitoring the material damages of the undulated plate in its early stage. However, several factors must be considered for the propagation of the SHC in an undulated plate because of the geometric curvature and interference between the second harmonics during propagation, preventing efficient application of this technique. If the fundamental wave can propagate in the plate regardless of the plate boundary conditions, an accumulative effect always exists for the ZFC in a thin plate, indicating that the ZFC is independent of the structural geometry. This study reveals that the ZFC-based inspection technique is more efficient and powerful in characterizing the damages of a symmetrical undulated plate in the early stage of service compared to the second harmonic method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Chongqing CSTC
Doctoral Program Fund of Chongqing Industry Polytechnic College