Investigation of the Zero-Frequency Component of Nonlinear Lamb Waves in a Symmetrical Undulated Plate

Author:

Sun Xiaoqiang1ORCID,Shui Guoshuang2ORCID

Affiliation:

1. College of General Education, Chongqing Industry Polytechnic College, Chongqing 401120, China

2. Department of Mechanics, Beijing Jiaotong University, Beijing 100044, China

Abstract

When an ultrasonic pulse propagates in a thin plate, nonlinear Lamb waves with higher harmonics and a zero-frequency component (ZFC) will be generated because of the nonlinearity of materials. The ZFC, also known as the static displacement or static component, has its unique application on the evaluation of early-stage damages in the elastic symmetrical undulated plate. In this study, analysis of the excitation mechanism of the ZFC and the second harmonic component (SHC) was theoretically and numerically investigated, and the material early-stage damage of a symmetrical undulated was characterized by studying the propagation of nonlinear Lamb waves. Both the ZFC and SHC can be effectively employed in monitoring the material damages of the undulated plate in its early stage. However, several factors must be considered for the propagation of the SHC in an undulated plate because of the geometric curvature and interference between the second harmonics during propagation, preventing efficient application of this technique. If the fundamental wave can propagate in the plate regardless of the plate boundary conditions, an accumulative effect always exists for the ZFC in a thin plate, indicating that the ZFC is independent of the structural geometry. This study reveals that the ZFC-based inspection technique is more efficient and powerful in characterizing the damages of a symmetrical undulated plate in the early stage of service compared to the second harmonic method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing CSTC

Doctoral Program Fund of Chongqing Industry Polytechnic College

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3