Precursor Damage Quantification in Composite Structures Using Coda Wave Interferometry and Nonlinear Ultrasonics

Author:

Ahmed Hossain1,Sadaf Asef1,Banerjee Sourav2

Affiliation:

1. Georgia Southern University Department of Mechanical Engineering, , Statesboro, GA 30460

2. University of South Carolina Department of Mechanical Engineering, , Columbia, SC 29208

Abstract

Abstract Methods to quantification of precursor damage in carbon fiber reinforced polymer (CFRP) composite structures are reported herein. These techniques include coda wave interferometry (CWI) and nonlinear ultrasonics (NLU). Since low-frequency Lamb wave propagation is insensitive to the early-stage material degradation, it is shown that decoding the information in coda wave can overcome this well-known limitation. To conclude this possibility, CWI technique is cross verified with a traditional high-frequency ultrasound method. To achieve this goal, a tensile–tensile fatigue experiment was designed for CFRP composite specimens. By inducing controlled fatigue damage in these structures, material states are assessed using low-frequency (<500 kHz) ultrasonic guided wave and high-frequency (>10 MHz) P-wave. Stretching guided coda wave is utilized to quantify the precursor damage as a unique approach in this article. However, such method could be illuded by the changes in the signals due to bonds and contacts. To verify if the CWI is successful, and to evaluate the precursor damage in composite structures, additional nonlinear analysis of ultrasonic signals from both guided waves and P-waves is performed. Higher order nonlinearities in both low-frequency guided wave and high-frequency P-wave propagation demonstrate the growth of precursor damage in CFRP composite structures. So does the CWI of low-frequency guided wave data. Accuracy of these ultrasonic techniques is validated with experimentally obtained remaining strengths of the fatigue specimens. With this verification it is envisioned that both CWI and NLU together could quantify the precursor damage in composite structures.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3