Observations on the Nature of Transfer Functions for Control of Piezoelectric Laminates

Author:

Alberts T.E.1,Colvin J.A.1

Affiliation:

1. Department of Mechanical Engineering and Mechanics Old Dominion University Norfolk, VA 23529-0247

Abstract

In this paper, some fundamental relationships for beams incorporating piezoelectric film actuators and sensors are examined. The differential equation of motion for a beam with piezoelectric film bonded to both sides is used to develop Laplace domain transfer function models of the system. These transfer functions are exact Laplace domain representations of the system equations of motion. The transfer functions are cast into a closed rational form using Maclaurin series expansions representing a specific number of modes. In this form, the transfer functions lend themselves to classical control analysis. It is shown that the transfer function relating a voltage applied to a full coverage actuating layer, to the voltage induced in a full coverage sensing layer on the opposite beam face, be haves like a classic colocated system with alternating poles and zeros and accordingly the system is easy to stabilize with low order compensation. In contrast to this result, it is shown that in spite of the effective colocation of actuator and sensor in the case of the transfer function from actuating voltage to tip position, the desirable alternating pole/zero pattern is not exbibited due to incompatibility of actuating and sensing signals. This result is verified experimentally.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-Space Approaches to Complex Structures in Aerospace;Aerospace Research Communications;2023-12-19

2. A robust resonant controller design for MEMS-based multi-layered prestressed piezoelectric cantilever beam;Sensors and Actuators A: Physical;2022-07

3. On transmission Zeros of piezoelectric structures;Journal of Intelligent Material Systems and Structures;2021-11-09

4. Resonant controllers for smart structures;Smart Materials and Structures;2002-02-08

5. Vibration and sound radiation controls of beams using layered modal sensors and actuators;Smart Materials and Structures;1998-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3